23.5.20 Schwarz不等式和内积的连续性
最后更新时间:
Schwarz不等式 \(\forall x,y\in H\) ,\(H\)是Hilbert空间,有 \[ |(x,y)|^2\leq(x,x)(y,y) \]
Proof 对任意的\(\lambda\in\mathbb{C},x,y\in H\) \[ (x+\lambda y,x+\lambda y)=(x,x)+|\lambda|^2(y,y)+\lambda(y,x)+\bar{\lambda}(x,y)\geq0 \] 若\(y=0\),则不等式显然成立。 若\(y\neq 0\),则令 \[ \lambda=\frac{-(x,y)}{(y,y)} \] 代入上式得, \[ (x,y)+|\frac{-(x,y)}{(y,y)}|^2(y,y)+\frac{-(x,y)}{(y,y)}(y,x)+\overline{\frac{-(x,y)}{(y,y)}}(x,y)\geq 0 \] \[ (x,y)+\frac{|(x,y)|^2}{(y,y)}+\frac{-|(x,y)|^2}{(y,y)}+\frac{-|(x,y)|^2}{(y,y)}\geq 0 \] \[ (x,y)\geq\frac{(x,y)^2}{(y,y)} \] 故有, \[ |(x,y)|^2\leq(x,x)(y,y)=||x||\cdot||y|| \]
内积的连续性 \(H\)是Hilbert空间,内积\((x,y)\)是关于\(x,y\)的连续函数,即 \[ (x,y)=(\lim_{n\to\infty}x_n,\lim_{n\to\infty}y_n)=lim_{n\to\infty}(x_n,y_n) \]
Proof 要证明内积连续,即要说明 \[ |(x_n,y_n)-(x,y)|\to 0 \] 考察, \[ \begin{aligned} |(x_n,y_n)-(x_n+x-x_n,y)|&=|(x_n,y_n)-(x_n,y)-(x-x_n,y)|\\ &\leq|(x_n,y_n)-(x_n,y)|+|(x-x_n,y)|\\ &=|(x_n,y_n-y)|+|(x-x_n,y)| \end{aligned} \] 有Schwartz不等式得, \[ |(x_n,y_n-y)|+|(x-x_n,y)|\leq||x_n||\cdot||y_n-y||+||x_n-x||\cdot||y|| \] 又因为\(x_n\to x,y_n\to y\quad(n\to\infty)\) ,所以有\(||x_n||\)有界,以及 \[ ||y_n-y||\to0,||x_n-x||\to0 \] 所以就有, \[ |(x_n,y_n)-(x,y)|\to 0 \] 即内积是连续函数。